zenyx-engine/engine/src/core/render/ctx.rs

317 lines
11 KiB
Rust
Raw Normal View History

2025-02-04 05:10:53 -05:00

use std::borrow::Cow;
use std::sync::Arc;
use std::time::Instant;
use thiserror::Error;
use winit::window::Window;
use futures::executor::block_on;
#[derive(Debug, Error)]
pub enum ContextError {
#[error("Failed to create WGPU surface: {0}")]
SurfaceCreationFailure(#[from] wgpu::CreateSurfaceError),
}
/// This WGSL shader generates a cube procedurally and rotates it around the Y axis.
/// A uniform (u.time) is used as the rotation angle. After rotation, a simple
/// perspective projection is applied (dividing x,y by z) to produce clip-space coordinates.
const CUBE_SHADER: &str = r#"
struct Uniforms {
time: f32,
// pad to 16 bytes (uniforms require 16-byte alignment)
padding0: f32,
padding1: f32,
padding2: f32,
};
@group(0) @binding(0)
var<uniform> u: Uniforms;
// Returns a rotation matrix about the Y axis.
fn rotationY(angle: f32) -> mat3x3<f32> {
let c = cos(angle);
let s = sin(angle);
return mat3x3<f32>(
vec3<f32>( c, 0.0, s),
vec3<f32>(0.0, 1.0, 0.0),
vec3<f32>(-s, 0.0, c)
);
}
@vertex
fn vs_main(@builtin(vertex_index) vid: u32) -> @builtin(position) vec4<f32> {
// We generate 36 vertices (6 faces * 6 vertices per face)
let face: u32 = vid / 6u; // which face (0..5)
let corner: u32 = vid % 6u; // which corner within that face
// Offsets for the two triangles that make up a face:
// (these are in a 2D space, later used to compute positions on the face)
var offsets = array<vec2<f32>, 6>(
vec2<f32>(-1.0, -1.0),
vec2<f32>( 1.0, -1.0),
vec2<f32>( 1.0, 1.0),
vec2<f32>( 1.0, 1.0),
vec2<f32>(-1.0, 1.0),
vec2<f32>(-1.0, -1.0)
);
var center: vec3<f32>;
var uvec: vec3<f32>;
var vvec: vec3<f32>;
// Define each face of the cube (cube of side length 1 centered at origin)
if (face == 0u) {
// Front face (z = +0.5)
center = vec3<f32>(0.0, 0.0, 0.5);
uvec = vec3<f32>(0.5, 0.0, 0.0);
vvec = vec3<f32>(0.0, 0.5, 0.0);
} else if (face == 1u) {
// Back face (z = -0.5)
center = vec3<f32>(0.0, 0.0, -0.5);
uvec = vec3<f32>(-0.5, 0.0, 0.0);
vvec = vec3<f32>(0.0, 0.5, 0.0);
} else if (face == 2u) {
// Right face (x = +0.5)
center = vec3<f32>(0.5, 0.0, 0.0);
uvec = vec3<f32>(0.0, 0.0, -0.5);
vvec = vec3<f32>(0.0, 0.5, 0.0);
} else if (face == 3u) {
// Left face (x = -0.5)
center = vec3<f32>(-0.5, 0.0, 0.0);
uvec = vec3<f32>(0.0, 0.0, 0.5);
vvec = vec3<f32>(0.0, 0.5, 0.0);
} else if (face == 4u) {
// Top face (y = +0.5)
center = vec3<f32>(0.0, 0.5, 0.0);
uvec = vec3<f32>(0.5, 0.0, 0.0);
vvec = vec3<f32>(0.0, 0.0, -0.5);
} else {
// Bottom face (y = -0.5)
center = vec3<f32>(0.0, -0.5, 0.0);
uvec = vec3<f32>(0.5, 0.0, 0.0);
vvec = vec3<f32>(0.0, 0.0, 0.5);
}
let off = offsets[corner];
var pos = center + off.x * uvec + off.y * vvec;
// Apply a rotation about the Y axis using the uniform time.
let rot = rotationY(u.time);
pos = rot * pos;
// Translate the cube so it is in front of the camera.
pos = pos + vec3<f32>(0.0, 0.0, 2.0);
// Simple perspective projection: divide x and y by z.
let projected = vec2<f32>(pos.x / pos.z, pos.y / pos.z);
return vec4<f32>(projected, 0.0, 1.0);
}
@fragment
fn fs_main() -> @location(0) vec4<f32> {
// Output a fixed color.
return vec4<f32>(0.7, 0.7, 0.9, 1.0);
}
"#;
pub struct WgpuCtx<'window> {
device: wgpu::Device,
queue: wgpu::Queue,
surface: wgpu::Surface<'window>,
surface_config: wgpu::SurfaceConfiguration,
adapter: wgpu::Adapter,
render_pipeline: wgpu::RenderPipeline,
uniform_buffer: wgpu::Buffer,
start_time: Instant,
}
impl<'window> WgpuCtx<'window> {
pub async fn new(window: Arc<Window>) -> Result<WgpuCtx<'window>, ContextError> {
let instance = wgpu::Instance::default();
let surface = instance.create_surface(Arc::clone(&window))?;
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
force_fallback_adapter: false,
compatible_surface: Some(&surface),
})
.await
.expect("Failed to obtain render adapter");
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
label: None,
required_features: wgpu::Features::empty(),
required_limits: wgpu::Limits::downlevel_webgl2_defaults()
.using_resolution(adapter.limits()),
memory_hints: wgpu::MemoryHints::Performance,
},
None,
)
.await
.expect("Failed to create rendering device");
let size = window.inner_size();
let width = size.width.max(1);
let height = size.height.max(1);
let surface_config = surface.get_default_config(&adapter, width, height).unwrap();
surface.configure(&device, &surface_config);
// Create a uniform buffer (16 bytes to satisfy alignment requirements)
let uniform_buffer = device.create_buffer(&wgpu::BufferDescriptor {
label: Some("Uniform Buffer"),
size: 16,
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
mapped_at_creation: false,
});
// Create the shader module from the inline WGSL shader.
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Cube Shader"),
source: wgpu::ShaderSource::Wgsl(Cow::Borrowed(CUBE_SHADER)),
});
// Create a bind group layout for the uniform.
let bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("Uniform Bind Group Layout"),
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: wgpu::BufferSize::new(16),
},
count: None,
}],
});
// Create the pipeline layout.
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Cube Pipeline Layout"),
bind_group_layouts: &[&bind_group_layout],
push_constant_ranges: &[],
});
// TODO: add proper vertex buffer
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Cube Render Pipeline"),
layout: Some(&pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: Some("vs_main"),
buffers: &[],
compilation_options: wgpu::PipelineCompilationOptions::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: Some("fs_main"),
targets: &[Some(wgpu::ColorTargetState {
format: surface_config.format,
blend: Some(wgpu::BlendState::REPLACE),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: wgpu::PipelineCompilationOptions::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: None,
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
Ok(WgpuCtx {
device,
queue,
surface,
surface_config,
adapter,
render_pipeline,
uniform_buffer,
start_time: Instant::now(),
})
}
pub fn new_blocking(window: Arc<Window>) -> Result<WgpuCtx<'window>, ContextError> {
block_on(Self::new(window))
}
pub fn resize(&mut self, new_size: (u32, u32)) {
let (width, height) = new_size;
self.surface_config.width = width.max(1);
self.surface_config.height = height.max(1);
self.surface.configure(&self.device, &self.surface_config);
}
pub fn draw(&mut self) {
// Update the uniform buffer with the elapsed time.
let elapsed = self.start_time.elapsed().as_secs_f32();
// Pack into 4 floats (pad to 16 bytes)
let time_data = [elapsed, 0.0, 0.0, 0.0];
self.queue.write_buffer(&self.uniform_buffer, 0, bytemuck::cast_slice(&time_data));
let surface_texture = self
.surface
.get_current_texture()
.expect("Failed to get surface texture");
let view = surface_texture
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder =
self.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Cube Command Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Cube Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
timestamp_writes: None,
occlusion_query_set: None,
});
render_pass.set_pipeline(&self.render_pipeline);
// Create a bind group on the fly for the uniform.
let bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor {
label: Some("Uniform Bind Group (per draw)"),
layout: &self.render_pipeline.get_bind_group_layout(0),
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: self.uniform_buffer.as_entire_binding(),
}],
});
render_pass.set_bind_group(0, &bind_group, &[]);
// Draw 36 vertices (6 faces × 6 vertices)
render_pass.draw(0..36, 0..1);
}
self.queue.submit(Some(encoder.finish()));
surface_texture.present();
}
}